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We discuss how the diffusive dynamics of a conserved order parameter should be numerically treated when
impenetrable wall surfaces are present and interact with the degrees of freedom characterized by the order
parameter. We derive the discretization scheme for the dynamics, paying particular attention to the conserva-
tion of the order parameter in the strict numerical sense. The discretized chemical potential, or the functional
derivative of the free energy, contains a surface contribution inversely proportional to the grid spacing �z,
which was proposed heuristically in a recent paper of Henderson and Clarke �Macromol. Theory Simul. 14,
435 �2005��. Although apparently that surface contribution diverges in the continuum limit �z→0, we can
show, by an analytic argument and numerical calculations, that this divergence does not yield any anomalies,
and that our discretization scheme is well defined in this limit. We also discuss the correspondence of our
treatment to the model proposed by Puri and Binder �Phys. Rev. A 46, R4487 �1992�� extensively used for the
present problem.
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I. INTRODUCTION

How a liquid in a vapor, or a mixture of liquids, behaves
at and in the vicinity of solid surfaces has long been a sub-
stantial problem in fundamental science as well as in practi-
cal applications. A typical and important example is wetting
phenomena �1–5�. One of the pioneering studies using a con-
tinuum theory is due to Cahn �6�, who discussed the wetting
of a two-phase fluid close to its critical point. His theory is
based on the free energy as a functional of a scalar order
parameter � characterizing the fluid composition. The free
energy is composed of the bulk part of the Landau-Ginzburg
type and the surface part depending only on the surface com-
position field. It is then formally written as

F���
kBT

= �
�

ddr� fb���r�� +
1

2
�����2� + �

��

dd−1rfs���r�� ,

�1�

where � is the volume of the system, d is the spatial dimen-
sion, fb is the local free energy density in the bulk, and the
excess of the free energy due to inhomogeneity is taken into
account in the second term. The last term is associated with
the short-range interaction between the fluid and the sub-
strate surface ��. Numerous theoretical studies �7� extending
the Cahn’s approach have been done concerning the static
nature of wetting phenomena.

Dynamical aspects of wetting phenomena have also been
of fundamental interest. Over the last decade, considerable
attention has been paid to the phase separation dynamics of a
binary mixture in the presence of a solid surface wetted pref-
erably by one of the two components �8–16� as an important
problem concerning dynamical wetting phenomena. To deal

with that problem, appropriate equations governing the dy-
namics of the order parameter � at the surface as well as in
the bulk must be given. When the hydrodynamic flow is not
taken into account, the diffusive dynamics of � in the bulk is
readily written, with the assumption of Fick’s law and the
appropriate mobility M, as

�

�t
� = � · �M�

�F/kBT

��
	 . �2�

Equation �2�, with an appropriate bulk free energy, is often
referred to as model B following the nomenclature of Hohen-
berg and Halperin �17�. When � characterizes the fluid com-
position as mentioned above, it must be treated as a con-
served quantity. The conservation of � is properly taken into
account in the model B equation �2�.

How the order parameter � evolves at the surface is, how-
ever, not trivial. From Eq. �1�, the surface chemical potential
reads dfs /d�+� ·���, where � is a unit vector normal to ��
and pointing outwards. Therefore a possible candidate for the
dynamics of � at the surface is

�

�t
� = Ms�dfs

d�
+ � · ���	 , �3�

which is indeed employed by Jacqmin �18�, who discussed
the dynamics of a moving contact line. There is, however, no
guiding principle of determining the “surface mobility” Ms
in the model equation �3� and therefore Eq. �3� is just an
assumption.

One of the pioneering theoretical studies concerning how
a surface affects the dynamics of a system with a conserved
order parameter was done by Binder and Frisch �19�. Start-
ing from the Kawasaki spin-exchange model �20�, they de-
rived discrete and continuum versions of the equations of
motion for the conserved spin variable in the presence of a
wall. Their equations of motion contain only one character-*Electronic address: fukuda.jun-ichi@aist.go.jp
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istic time, which is associated with the spin-exchange prob-
ability. Therefore in one of their model equations corre-
sponding to Eq. �3�, the surface mobility is automatically
determined by this spin-exchange characteristic time. Using
the continuum version of the Binder-Frisch model, and ex-
plicitly taking into account the boundary condition concern-
ing the impenetrability of the wall, Puri and Binder �21�
carried out extensive numerical calculations to investigate
the surface enrichment or the effect of the presence of sur-
faces on the dynamics of the phase separation of binary mix-
tures. They showed the growth of composition fluctuations in
the vicinity of a surface, which well reproduced correspond-
ing experiments. Their model �which we will refer to as the
PB model� and its extensions, consisting of the dynamic
equation in the bulk �2�, the surface diffusion equation �3�,
and the requirement of no order-parameter flux through the
surface, have been extensively used in subsequent numerical
studies concerning the effect of an impenetrable surface on
the dynamics of a fluid in its vicinity �22–28�.

However, due to the possible numerical errors in the dis-
cretization of the model and the nonconserved form of the
surface diffusion equation �3�, it is not trivial what kind of
discretization guarantees the overall conservation of � in the
strict numerical sense. Moreover, the condition of no order-
parameter flux involves third-order spatial derivative at the
surface �see Eq. �36� below�, which requires the values of �
on at least four grid points along the surface normal. There-
fore care must be taken of the time evolution of those four
grid points �or grid layers in two or more dimensions�. Nev-
ertheless, to our knowledge, none of the previous work using
the PB model presented in detail how it was discretized.

Moreover, Henderson and Clarke �29� �we will abbreviate
them as HC� recently demonstrated that the PB model gives
inconsistent results when the grid spacing is varied. They
also proposed a model different from the PB model; instead
of using a separate equation �3� for the dynamics of � at the
surface, they just applied Eq. �2� to the surface as well as to
the bulk. Furthermore, their surprising claim is that in the
treatment of the surface, the numerical grid spacing must be
included in the dynamical equation explicitly, although the
grid spacing does not have any physical meaning of its own.
Their numerical results, therefore, cast a fundamental doubt
to the validity and the consistency of the PB model. How-
ever, the argument of Henderson and Clarke on their model
lacks a mathematical justification; their justification of the
model relies only on the consistency of its numerical results.

Given those ambiguities in the previous numerical treat-
ments of the dynamics of a conserved order parameter in the
presence of a wall surface, it should be worthwhile to discuss
thoroughly how the equation of motion for a conserved order
parameter should be discretized when a wall is present,
which is the aim of this paper. Together with an appropriate
discretization of the free energy �1� and the equation of mo-
tion for the order parameter � in the bulk �2�, we derive the
equation for the dynamics of � at the wall surfaces, paying
particular attention to the overall conservation of � in the
strict numerical sense. Our equations are similar to those of
the HC model �29�, in that the grid spacing appears explicitly
in the equations. We show by an analytical argument together
with numerical test calculations that this apparent depen-

dence of the model equation on the grid spacing does not
play any harmful role, that is, our model is consistent when
the grid spacing is varied. Our results clearly demonstrate
that naive discretization of Eq. �3� does not make sense, in-
sofar as one wants to start with the free energy of the form of
Eq. �1�. We also discuss how the PB model, which does not
explicitly contain the numerical grid spacing, is related with
ours.

This paper is organized as follows. Section II gives our
numerical treatment of the dynamics of a conserved order
parameter in the presence of walls. In Sec. III A, we show
analytically and by numerical test calculations that our
model presented in Sec. II is consistent when the grid spac-
ing is varied. We discuss in Sec. III B the similarities and
differences between our model and the previous correspond-
ing models, the PB model, and the HC model. Section IV
concludes this paper.

II. NUMERICAL TREATMENT

We consider a one-dimensional semi-infinite system
where a planar impenetrable wall is located at z=0 and the z
axis is parallel to the wall normal. We restrict ourselves to
one dimension just for the simplicity and clarity of the pre-
sentation, and extension to higher dimensions is straightfor-
ward.

We introduce a conserved order parameter ��z , t� describ-
ing the state of the system. The conservation of � implies

�
0

�

dz��z,t� = �
0

�

dz��z,0� , �4�

or equivalently

�

�t
�

0

�

dz��z,t� = 0 �5�

throughout the time evolution �t	0�. The free energy �1� in
our one-dimensional system per area is written as

Ftot���z��
kBT

=
F���z��

kBT
− 
�

0

�

dz��z� , �6�

with

F���z��
kBT

= �
0

�

dz
 fb„��z�… +
1

2
�� �

�z
��z�	2� + fs„��0�… .

�7�

Here we have introduced a Lagrange multiplier 
 ensuring
the conservation of the order parameter �, Eq. �4�. Hereafter
in this section we choose the unit of the energy such that
kBT=1. We note that the equilibrium profile of ��z� is deter-
mined by �Ftot /���z�=0, i.e.

�F

���z�
= 
 , �8�

together with the constraint �4�.
The time evolution of the order parameter in the bulk �z

	0� is written formally in terms of a flux j�z , t� of the order
parameter as
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�

�t
��z,t� = −

�

�z
j�z,t� . �9�

Equation �9� is a differential description of the conservation
of �. We assume Fick’s law for j�z�

j�z� = − M
�

�z

�F

���z�
. �10�

In principle, the mobility M can be a function of �, the
position z, and the time t, but such dependence is not essen-
tial in the following discussion. Notice also that j�z�=0 �or
�(�F /���z�) /�z=0� that must be fulfilled in equilibrium can
be regarded as a differential form of Eq. �8�, the equilibrium
condition. In the case of constant M, Eqs. �9� and �10� reduce
to

�

�t
� = M

�2

�z2

�F

��
, �11�

which is the one-dimensional version of model B �see Eq.
�2��.

We note that the time evolution of the order parameter at
the wall ��0� is not a trivial matter from the argument above,
because the functional derivative of Eq. �7� reads

�F

���z�
= fb�„��z�… − �

�2��z�
�z2 + �− �

���z�
�z

+ fs�„��z�…	��z� ,

�12�

which contains a � function. Here fb/s� ����dfb/s /d�. In the
PB model, the time evolution of ��0� is essentially driven by
the surface chemical potential, which in the notation of the
present model, is written as −� ��

�z z=0+ fs�(��0�). The PB
model also includes a second boundary condition ensuring
the conservation of �, that is, j�0�=0. We emphasize that the
PB model originates not from a continuum theory, but from a
lattice model and taking its continuum limit �19�. That is the
reason why they did not consider explicitly how the � func-
tion should be treated. The details of the PB model in con-
nection with ours will be discussed below in Sec. III B 1.

Now we discretize the system with the spacing �z, and
define �i=��i�z�. A natural discretization of the free energy
�6� reads

Ftot���i�� = F���i�� − 
�
i=0

� ��i + �i+1

2
	�z , �13�

with

F���i�� = �
i=0

� � fb��i� + fb��i+1�
2

+
1

2
���i+1 − �i

�z
	2��z

+ fs��0� . �14�

Here we have employed a simple trapezoidal formula �30�
for the evaluation of the integral. The functional derivative
�F /���z� in the continuum description is replaced by a par-
tial differentiation of the discretized F with respect to �i

1

�z

�F

��i
=

1

�z

�Ftot

��i
+ 
 = fb���i� − �

�i−1 − 2�i + �i+1

��z�2 �i � 1� ,

�15�

2

�z

�F

��0
=

2

�z

�Ftot

��0
+ 
 = fb���0� + �− �

�1 − �0

�z
+ fs���0�� 2

�z

= fb���0� − �
�0 − 2�1 + �2

��z�2 + �− �
− 3�0 + 4�1 − �2

2�z

+ fs���0�� 2

�z
. �16�

We notice that ��i−1−2�i+�i+1� / ��z�2= ��2� /�z2�z=i�z

+O(��z�2), �−3�0+4�1−�2� / �2�z�= ��� /�z�z=0+O(��z�2),
and ��0−2�1+�2� / ��z�2= ��2� /�z2�z=0+O��z�. Therefore,
if we regard �2/�z��i,0 as the discretized version of the �
function ��z�, Eqs. �15� and �16� can be considered to repre-
sent in a well-defined manner the functional derivative �12�
in the discretized space �31�.

Our next step is to discretize the equation of motion for �,
Eq. �9�, together with the flux �10�. We define the discretized
flux as

j��i +
1

2
	�z	 � ji+1/2 = − M

1

�z
� 1

�z

�F

��i+1
−

1

�z

�F

��i
	
�17�

for i�1. The equation motion for � in the discretized space
reads

�

�t
�i = −

1

�z
�ji+1/2 − ji−1/2� . �18�

How to discretize the time derivative is not important in the
present discussion. We notice that for i�2, Eqs. �17� and
�18� yield a well-defined discretization of model B equation
�11�.

To find out how �0 and �1 should evolve with time in the
discretized space, we recall Eq. �5� that implies the conser-
vation of �. The discretized version of Eq. �5� is

0 =
�

�t
�
i=0

�
�i + �i+1

2
�z = �z� 1

2

�

�t
�0 + �

i=1

�
�

�t
�i� , �19�

where we have again used the trapezoidal formula for the
discretization of the integral. From Eqs. �18� and �19�, we
find

�

�t
�0 = −

2

�z
j1/2, �20�

where j1/2 is yet to be determined. We note that when we
define an artificial flux at z=− 1

2�z as j−1/2=−j1/2, Eq. �20�
reduces to Eq. �18�. Moreover, the flux at z=0 then reads
j�z=0�= 1

2 �j1/2+ j−1/2�+O(��z�2)=O(��z�2), which is another
manifestation of the impenetrability of the wall at z=0, al-
though it is realized in the strict sense in Eq. �19�.

Care must be taken when we define j1/2. In equilibrium,
j1/2=0 must be satisfied. From Eqs. �15� and �16�, the equi-
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librium conditions at i=0 and i=1 read 
= �1/�z���F /��1�
= �2/�z���F /��0�. Then the appropriate definition of j1/2

should be

j1/2 = − M
1

�z
� 1

�z

�F

��1
−

2

�z

�F

��0
	 . �21�

Now that j1/2 is given, the time evolution of �0 and �1 is also
well defined. Finally we can adopt any numerically feasible
discretization scheme for the discretization of the time de-
rivative, including explicit Euler, fully implicit, and Crank-
Nicholson schemes �30�.

To summarize, our numerical scheme of the dynamics of
a conserved order parameter � is implemented by Eq. �18�,
together with an appropriate discretization for � /�t and
j−1/2=−j1/2. The discretized flux j is given by Eqs. �17� and
�21�, with the discretized free energy �14�. When we define

��Fb

��
�

i
= � fb���i� − �

�i−1 − 2�i + �i+1

��z�2 �i � 1�

fb���0� − �
�0 − 2�1 + �2

��z�2 �i = 0� ,

�22�

the equations for the time evolution of �i can be explicitly
written as

�

�t
�i = M

1

��z�2���Fb

��
�

i−1
− 2��Fb

��
�

i
+ ��Fb

��
�

i+1
	 �i � 2� ,

�23�

�

�t
�1 = M

1

��z�2���Fb

��
�

0
− 2��Fb

��
�

1
+ ��Fb

��
�

2

+ �− �
− 3�0 + 4�1 − �2

2�z
+ fs���0�� 2

�z
	 , �24�

�

�t
�0 = M

1

��z�2���Fb

��
�

−1
− 2��Fb

��
�

0
+ ��Fb

��
�

1

− 2�− �
− 3�0 + 4�1 − �2

2�z
+ fs���0�� 2

�z
	 . �25�

As noted above, Eq. �23� is just the discretization of the
model B equation �11� in the bulk. In Eq. �25�, we have
defined

�Fb

�� −1=
�Fb

�� 1, which is consistent with the definition
of the flux j−1/2=−j1/2.

III. DISCUSSION

A. Consistency of our scheme with the variation of �z

1. Analytical argument

One may wonder whether Eqs. �24� and �25� behave in a
consistent and well-defined manner with the variation of �z
and in the limit �z→0, because the surface contribution in
Eqs. �24� and �25� apparently contains a factor 2 /�z. To
answer this question, we introduce a Fourier transform of
�i=��i�z�

��q� = �z� 1

2
�0 + �

i=1

�

�i cos�qi�z�� . �26�

Inverse Fourier transform of Eq. �26� is

�i =
2

�
�

0

�/�z

dq��q�cos�qi�z� . �27�

We note again that �i implies ��i�z�; therefore the spatial
position indicated by i is different with the variation of �z.
Moreover, in the limit �z→0, Eq. �26� becomes ��q�
=�0

�dz��z�cos�qz�, with z= i�z, which clearly implies that
Eq. �26� is well defined in this limit. We also notice that ��q�
is insensitive to the variation of �z as long as q�z�1.

From Eqs. �23�–�26�, we can write down the equation for
the time evolution of ��q�. A straightforward calculation
yields

1

M

�

�t
��q� = −

2

��z�2„1 − cos�q�z�…�z� 1

2
fb���0�

+ �
i=1

�

fb���i�cos�qi�z�� −
2�

��z�4„3 − 4 cos�q�z�

+ cos�2q�z�…��q� −
2

��z�2„1 − cos�q�z�…fs���0�

�28�

The first line involves the Fourier transform of fb���i�, which
we will denote by fb��q�. Equation �28� can be rewritten as

1

M

�

�t
��q� = − q2fb��q� − �q4��q� − q2fs���0� + O„��z�2

… .

�29�

Since all the terms involved in Eq. �29� are well behaved in
the limit �z→0, Eq. �28�, or equivalently Eq. �29�, is well
defined in this limit. Therefore we have shown that the ap-
parent factor 2 /�z in Eqs. �24� and �25� yields no anomaly in
the time evolution of �.

2. Numerical test

We also perform numerical test calculations to demon-
strate in a clearer fashion the consistency of our scheme
when �z is varied. So long as the grid spacing �z is spatially
uniform, an infinite system cannot be dealt with numerically.
Therefore in this section we consider a finite space 0z
L and incorporate a surface energy also at z=L. This is
achieved just by adding fs(��L�) to the free energy, Eqs. �7�
or �14�. In general the functional form of the surface free
energies at z=0 and at z=L can be different. Here we choose
the same form just for simplicity.

We adopt a quadratic form for the bulk and the surface
free energies: fb���= 1

2a�2 with a=1, and fs���= 1
2b��

−�s0�2 with b=2.5 and �s0=0.5. We choose �=1 and L
=10. By rescaling time t, we can set M =1. As the initial
condition, we set �i�t=0�=�init=0.1 for any i. We note that
the equilibrium profile of � for the present problem can be

FUKUDA, YONEYA, AND YOKOYAMA PHYSICAL REVIEW E 73, 066706 �2006�

066706-4



obtained analytically, which is given in the Appendix.
As the discretization of the time derivative, we employ a

simple explicit Euler scheme, with the time increment �t.
The second term in the right-hand side of Eq. �28� plays a
dominant role in the numerical stability of the present
scheme. From the von Neumann analysis �30� of Eq. �28�,
we find that at least

8��t  ��z�4 �30�

must be satisfied �notice that this is not a sufficient condition
for the numerical stability�. The grid spacing �z and the time
increment �t used in our calculations are summarized in
Table I.

Figure 1 shows the time evolution of the profile of � with
�z=0.25. Since the system is symmetric about the center z
=5, only half of the system, i.e., 0z5, is presented. At
the initial stage, surface enrichment occurs because �s0
	��t=0�. The surface enrichment is compensated by the
decrease of � near the surface due to conservation. The de-
pleted region moves and extends towards the center of the
system, until equilibrium is reached.

To see the effect of the variation of the grid spacing �z,
we show in Fig. 2 the profiles of � for different �z’s at
several given t’s. We emphasize that in the case of �z
=0.25 in Fig. 2�a�, t=0.001, only five iterations have been
carried out and only nine grid points are present in the figure.
Thus we can say that those profiles in Fig. 2�a� fall astonish-
ingly well on one master curve, although the numerical reso-
lution �z=0.25 is not at all sufficient enough to describe the

very thin surface layer at the initial stage. As time elapses,
the profiles for different �z’s become indeed indistinguish-
able as can be seen in Fig. 2�b�, t=0.2, and finally the pro-
files attain their equilibrium �Fig. 2�c�, t=20�. The numerical
equilibrium profiles show an excellent agreement with the
analytic one obtained in the Appendix, which again supports
the validity of our numerical scheme.

To check in a different way how the variation of �z in-
fluences the dynamics of � in our numerical scheme, we plot
in Fig. 3 the time evolution of the surface order parameter
��0� for different �z’s. From Fig. 3�a�, we find that at later

TABLE I. The grid spacing �z and the time increment �t used
in our numerical calculations.

�z �t

0.25 2�10−4

0.2 1�10−4

0.1 1�10−5

0.05 5�10−7

0.02 1�10−8

FIG. 1. �Color online� Time evolution of the profile of � with
�z=0.25.

FIG. 2. �Color online� The profiles of � for different �z’s at �a�
t=0.001, �b� t=0.2, and �c� t=20. In �a�, only the region 0z2 is
shown, because in 2�z�8, ��z� stays at its initial value 0.1. In �c�,
the equilibrium profile calculated analytically in the Appendix is
also shown.
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times the numerical data collapse on a single curve, indicat-
ing the robustness of our numerical scheme in the late stage,
which manifests itself also in Figs. 2�b� and 2�c�. A closer
inspection of the initial stage in Fig. 3�b� reveals a slight
dependence of the evolution of ��0� on �z. However, the
data for �z=0.05 and 0.02 look like approaching a well-
defined asymptotic limit for �z→0 without suffering from
any anomalies. Considering the coarseness of the grids in the
cases of �z=0.25 and 0.2 for the description of a very thin
surface layer, we can still say that the time evolution of ��0�
is not so far away from the asymptotic limit of �z→0. It
may be worthwhile to point out that in the case of �z=0.1 a
slight oscillation is observed in the first few iterations, which
occurs when the time increment �t is close to the upper
threshold value ��z�4 /8� of the von Neumann criterion �30�.

To summarize, we have found from our test calculations
that �1� no anomaly is present in our numerical scheme when
we decrease the grid spacing �z, �2� well-defined asymptotic
behavior in the limit �z→0 is observed, and �3� even when
�z is not small, the numerical result is reliable enough as
long as the initial stage is not concerned, where very high

numerical resolution is required for the precise description of
the spatial variation of �.

B. Comparison of our scheme with previous ones

1. The PB model

To discuss the similarities and differences between the PB
model and ours, we review the dynamical model of the con-
served spin variables originally proposed by Binder and
Frisch �19�, from which the PB model was derived. When
homogeneity in all directions along the wall surface can be
assumed so that the system is effectively one dimensional,
the kinetic equations for the averaged spin variables �Sn� �n
being the position index along the surface normal� are writ-
ten as �19,32�

2�s
d

dt
�Sn� = − 2�Sn� + �Sn+1� + �Sn−1� + �1 − �Sn��Sn−1��

�tanh
 J

kBT
��Sn+1� − �q − 3��Sn−1� + �q − 3��Sn�

− �Sn−2��� + �1 − �Sn��Sn+1��

�tanh
 J

kBT
��Sn−1� − �q − 3��Sn+1�

+ �q − 3��Sn� − �Sn+2��� , �31�

for n�2 in the bulk

2�s
d

dt
�S1� = − 2�S1� + �S2� + �S0� + �1 − �S1��S0��

�tanh� J

kBT
��S2� − 
�q − 2�

Js

J
− 1��S0�

+ �q − 3��S1� −
H1

J
	� + �1 − �S1��S2��

�tanh
 J

kBT
��S0� − �q − 3��S2� + �q − 3��S1�

− �S3��� , �32�

at the layer adjacent to the surface �n=1�, and

2�s
d

dt
�S0� = − �S0� + �S1� + �1 − �S1��S0��tanh� J

kBT
�− �S2�

+ 
�q − 2�
Js

J
− 1��S0� − �q − 3��S1� +

H1

J
	� ,

�33�

at the surface layer �n=0�. Here �s is the characteristic time
for the microscopic spin-exchange processes, and q is the
coordination number in the bulk. The pair interaction is char-
acterized by J in the bulk, and Js for a pair of spins involving
the surface. The surface field is denoted by H1.

FIG. 3. �Color online� Time evolution of ��0� for different �z’s
up to �a� t=2 and �b� t=0.001. In �a�, numerical data in 0� t
�0.0002 are not shown, which results in an apparent jump of ��0�
from 0.1 to 0.15. In �b�, all the iterations are shown up to t
=0.001 ��z=0.25 and 0.2�, t=0.0002 ��z=0.1�, t=2�10−5 ��z
=0.05�, and t=2�10−6 ��z=0.02�.
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We define the order parameter at z=na �a is the layer
spacing� as ��z , t�= �Sn�. The surface layer is located at z
=0. Close to the bulk mean-field critical temperature Tc
=qJ /kB, the Taylor expansion of Eq. �31� yields

2�s
�

�t
��z,t� = − a2 �2

�z2
�Tc

T
− 1	��z,t� −

1

3

Tc

T
��z,t�3

+
Ja2

kBT

�2

�z2��z,t�� . �34�

It is important to notice that we have retained explicitly the
layer spacing a, while in the usual presentation of the PB
model �21�, a is assumed to be the unit length. The time
evolution of the order parameter at the surface is given, from
Eq. �33�, by

2�s
�

�t
��0,t� =

H1

kBT
+ 
�q − 2�

Js

kBT
− �q − 1�

J

kBT
���0,t�

+ � Ja

kBT

�

�z
��z,t��

z=0
, �35�

where terms linear in � and up to first order in spatial de-
rivatives have been retained. The Taylor expansion of Eq.
�32� for the layer adjacent to the surface �n=1� is highly
complicated �19�. Therefore, instead, a boundary condition
taking care of the conservation of the order parameter at the
surface is given in the PB model, which reads

� �

�z

�Tc

T
− 1	��z,t� −

1

3

Tc

T
��z,t�3 +

Ja2

kBT

�2

�z2��z,t���
z=0

= 0.

�36�

It should be noticed that the free energy functional in
terms of � corresponding to the original Hamiltonian for the
spin variables can be written as

F���
kBT

= �
0

� dz

a

1

2
�1 −

Tc

T
	��z�2 +

1

12

Tc

T
��z�4

+
1

2

Ja2

kBT
� ��

�z
	2� + �−

H1

kBT
��0� −

1

2

�q − 2�

Js

kBT

− �q − 1�
J

kBT
���0�2	 . �37�

The integrand is the free energy per layer and the integral
�0

� dz
a should be understood as the continuum limit of the

summation �n. When we set

fb���z�� =
1

a

1

2
�1 −

Tc

T
	��z�2 +

1

12

Tc

T
��z�4� , �38�

fs���0�� = −
H1

kBT
��0� −

1

2

�q − 2�

Js

kBT
− �q − 1�

J

kBT
���0�2,

�39�

together with �=Ja /kBT, M =a3 /2�s, and �z=a, the PB
model �34� and �35� agree with ours �Eqs. �23� and �25��
apart from a numerical factor concerning the surface energy
contribution �33� and the contribution from the bulk part in

Eq. �25�. We should notice that fb is, when multiplied by
kBT, the bulk free energy “density,” which is reflected in the
prefactor 1 /a in Eq. �38�. We also emphasize again that in
our model the conservation of the order parameter is satisfied
in the strict numerical sense, and therefore our model does
not include an explicit boundary condition corresponding to
Eq. �36�, as the original model of Binder and Frisch does not.

From the discussion in this section, we can say that the
PB model has a close correspondence to ours when the layer
spacing a is identified with the grid spacing �z in our model.
This is a natural consequence of the PB model originating
from the lattice model of Binder and Frisch with the lattice
spacing a.

We have already seen that the apparent surface mobility
�Ms in Eq. �3�� in the discretized system is proportional to
��z�−3 from Eq. �25�. Therefore a naively-discretized version
of the PB model, in particular Eq. �35�, does not give a
correct result as pointed out by Henderson and Clarke �29�,
unless the grid spacing �z is set equal to a. We emphasize
again that the PB model implicitly assumes that the lattice
spacing �or the distance between adjacent spin layers� is a.

2. The HC model

Henderson and Clarke �29� demonstrated in their simula-
tions that when the grid spacing �z is varied, consistent re-
sults cannot be obtained unless the coefficients in the surface
free energy are divided by �z. Direct comparison between
the HC model and ours is unavailable, because they did not
present the detailed discretization procedures. But we specu-
late that the division of the surface free energy by �z in the
HC model corresponds directly to the factor 2 /�z in our
model equations �24� and �25�. They arrived at the idea of
dividing the surface energy by �z by comparing the bulk
contribution in a numerical lattice cell and the surface con-
tribution at its edge. In the derivation of our model, we ar-
gued that the factor 2 /�z can be regarded as the numerical
discretization of the delta function at the surface. Since the
HC model can be expressed as the simple model B dynamics,
with the driving chemical potential being the functional de-
rivative of the “full” free energy including the surface con-
tribution with a delta function (see eq. �7� of Ref. �29�), our
model can be considered quite similar to the HC model.
Therefore our argument in Sec. III A can be regarded as a
clearer and more rigorous justification of the treatment of the
surface energy in the HC model.

IV. CONCLUSION

We have discussed how the so-called model B dynamical
equation for a conserved order parameter should be dis-
cretized when an impenetrable wall is present. We have pre-
sented the appropriate discretization scheme for the dynam-
ics of the order parameter at the surface as well as in the
bulk, starting with the form of the free energy with the short-
range interaction between the wall surface and the order pa-
rameter, and particular attention to the strict conservation of
the order parameter in the numerical system. One of the
striking features of our model is that the apparent “surface
mobility” �Ms in Eq. �3�� depends on the numerical grid
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spacing �z. We have shown analytically and by test calcula-
tions that this apparent dependence of the “surface mobility”
on �z does not yield any inconsistency of the numerical
results when �z is varied; the numerical evolution of the
order parameter is essentially independent of �z. Our argu-
ment justifies the previous numerical treatment of the model
B with a surface by Henderson and Clarke, who divided the
coefficients of the surface free energy by �z in their calcu-
lations. The consistency of our model when �z is varied
clearly demonstrates that naive discretization of the surface
diffusion equation of the form of �3� is no longer valid. We
have also pointed out that our model has a close, although
not perfect, correspondence to the familiar model for the
same problem proposed by Puri and Binder, when our grid
spacing �z is identified with the lattice spacing of the origi-
nal Kawasaki-spin system.

In this work we have dealt with the diffusive dynamics of
the order parameter and have not included the effect of a
hydrodynamic flow. We have also restricted our discussion to
the one-dimensional cases. The extension of our model to
multidimension is straightforward. The effect of the hydro-
dynamic flow can be properly included by modifying the flux
j, once the profile of the flow velocity for a given order
parameter profile is appropriately calculated. Therefore we
believe that our model for the dynamics of a conserved order
parameter in the presence of walls provides a firm basis for
the numerical treatment of the dynamics of a fluid in the
vicinity of a wall surface when the surface free energy is
explicitly given.
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APPENDIX: EQUILIBRIUM PROFILE FOR THE TEST
PROBLEM IN SECTION III A 2

The free energy for the present problem is

F���z�� = �
0

L

dz
 fb���z�� +
1

2
�� �

�z
��z�	2� + fs„��0�…

+ fs„��L�… . �A1�

Minimization of Eq. �A1�, i.e., �F /��=
, yields

fb�„��z�… − �
�2��z�

�z2 = 
 �0 � z � L� , �A2�

− �
��

�z
�0� + fs�„��0�… = 0 �z = 0� , �A3�

�
��

�z
�L� + fs�„��L�… = 0 �z = L� . �A4�

Since we have chosen fb����=a�, Eq. �A2� is readily inte-
grated to give

��z� =



a
+ A1e−z/� + A2ez/�, �A5�

where ���� /a. Now we have three unknown parameters:
A1, A2, and 
. Equations �A3� and �A4� serve as the two of
the three conditions that determine the unknowns. The last
condition comes from the conservation of �, Eq. �4�. In the
present problem, it reads

�initL = �
0

L

dz��z� =

L

a
− A1��e−L/� − 1� + A2��eL/� − 1� .

�A6�

Since from our choice fs����=b��−�s0�, Eqs. �A3�, �A4�,
and �A6� constitute a set of linear equations for our three
unknowns. Although it can be readily solved, the explicit
expression for the solution is rather lengthy and not essential
to our discussion. Therefore we merely mention here that for
the present choice of the parameters, i.e., a=1, b=2.5, �=1,
L=10, �s0=0.5, and �init=0.1, A1, A2, and 
 are given by

A1 =
1

3 + 2e−10 , �A7�

A2 =
e−10

3 + 2e−10 , �A8�


 =
1 + 4e−10

10�3 + 2e−10�
, �A9�

which yield the equilibrium profile

��z� =
1 + 4e−10

10�3 + 2e−10�
+

2

3e5 + 2e−5 cosh�z − 5� . �A10�

It is clear that the profile of Eq. �A10� is symmetric about the
center z=5.
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